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1 INTRODUCTION 

In 1967, David Gale's seminal paper, 'On Optimal Development in a 
Multi-Sector Economy', presented a general result on the existence of 
optimal programmes over an infinite horizon, when future utilities are not 
discounted. This paper changed, in a very substantive manner, the way in 
which economists approached the problems of optimal allocation of re-
sources over time. The question with which the paper concerned itself was, 
of course, a very challenging one: it had engaged the attention of econ-
omists like Ramsey, Samuelson and Solow, Koopmans and Weizsacker, 
among others, over roughly a forty-year period. But the enduring import-
ance of the paper lies less in the specific 'answer' obtained, and more on 
the techniques used to obtain it. In effect, David Gale showed that the 
main propositions of optimal growth theory could be established by rea-
soning, both elegant and compelling, with a few simple results from the 
theory of convex analysis. 

The basic technique used in Gale's paper is the theory of dual variables, 
or 'the method of price-systems', (to borrow an expression from Gale, 1968). 
Application of this technique to an optimal growth model with a convex 
technology set and a concave utility function helped to bring to centre stage 
a single remarkably useful construct: a golden rule supported by a suitable 
price system. The profound influence of Gale's methods in general, and of 
this construct in particular, on subsequent research in this area is clear 
from a survey by McKenzie (1986). 

* Research leading to this study was supported by a National Science Foundation 
Grant. I am indebted to R. Becker, M. Ali Khan, L. W. McKenzie, M. 
Majumdar, B. Peleg, and D. Ray for helpful conversations on the problems 
discussed in this study. 
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The present study can be viewed as an attempt to extend the analysis of 
Gale to multi-sectoral economies which allow for significant nonconvexities 
in the technology set. The pervasive use of David Gale's methods through-
out the study will be obvious even to the casual reader. But the fact that the 
construct of a price-supported golden-rule continues to hold centre stage in 
a model with a nonconvex technology set might come as a surprise to some. 
Certainly, it provides another instance where a construct emphasised by 
Gale has been found to be significant in an environment different from the 
one which gave rise to it. 

The literature on optimal intertemporal allocation of resources with a 
nonconvex technology has primarily confined itself to the framework of an 
aggregative model. The contributions have emphasised the qualitative 
differences between the theory with production nonconvexities, and the 
corresponding theory under convex production structures (see particularly 
Clark, 1971; Skiba, 1978; Majumdar and Mitra, 1982; 1983); they have 
introduced new techniques in dynamic optimisation theory to deal with the 
technical problems posed by nonconvex structures (see, for example, 
Dechert and Nishimura, 1983; Majumdar and Nermuth, 1982), which have 
also turned out to be useful in re-examining some problems under convex 
structures (see Mitra, 1983); a unification of the results for convex and 
nonconvex technology sets has also been obtained (see Mitra and Ray, 
1984). 

1 believe that the aggregative model with a nonconvex technology set is 
sufficiently well understood by this time, so that one can venture ahead to 
study some problems that arise in multi-sector models under nonconvexi-
ties. This paper is a study of one such problem: the existence of a nontrivial 
stationary optimal stock, when future utilities are not discounted. (I should 
mention that Ekeland and Scheinkman's, 1983, paper is the only one 1 
know of which deals with dynamic optimisation is a nonconvex multi-
sectoral setting; however, they are concerned with the existence of optimal 
programmes, and the necessity of some version of the 'transversality 
condition' being satisfied by optimal programmes, when future utilities are 
discounted. ) 

The existence of a nontrivial stationary optimal stock can be established 
in convex models by first establishing the existence of a golden rule - that 
is, a stationary programme which maximises period utility among all 
stationary programmes. A golden rule can then be supported by a price, 
using a standard separation theorem for convex sets. Finally, programmes 
which are 'good' (that is, which do not become 'infinitely worse' than a 
golden rule programme in the sum of utilities as the horizon approaches 
infinity) can be shown to satisfy an 'average turnpike property' (that is, the 
long-run average input and output levels converge to those of the set of 
golden rules). These three steps can be combined to show that a golden 
rule programme is a stationary optimal programme in the sense of the 
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'overtaking criterion'. For the sake of keeping our exposition self-
contained, we establish the existence of a golden rule (this does not involve 
convex structures) in section 3, and the existence of a price-support for a 
golden rule and a stationary optimal programme for convex models in 
section 4. (The methods used are of course familiar through the well-
known papers of Gale, 1967; McKenzie, 1968; Brock, 1970; and Peleg 
1973). 

The problem that arises when we allow the technology set to be non-
convex is illustrated by a two-good example in section 5. In the example, 
there is no stationary optimal programme and, in fact, it is shown that 
given any nontrivial stationary programme an oscillating programme can 
be found which is better than the stationary one. On the other hand, the 
existence of a nontrivial stationary optimal programme can be proved 
without the assumption of a convex technology set in the aggregative 
model. We demonstrate this in section 6, since it is a result not readily 
available in the literature in as general a form as we are asserting here. 

Our basic observation in section 7 is that in the existence proof for 
convex models, convexity of the technology set is not essential to proving a 
price-support for some golden rule. It can be accomplished as well when 
the technology set is 'quasi-star-shaped' with respect to some golden rule 
(besides satisfying a couple of regularity assumptions, namely strictly 
positive consumption at every golden rule, and smoothness of the utility 
function). We present examples to show that each of these assumptions is 
indispensable in providing a price-support for a golden rule. 

It apppears to us that the 'average turnpike property' proved in convex 
models is critically dependent on the convexity of the technology set. We, 
therefore, avoid this route and follow in section 8 an alternative route, 
using the so-called 'value-loss lemma'. This requires us to strengthen our 
assumption and make the technology set 'strictly quasi-star-shaped' with 
respect to some golden rule. The existence result then follows by applying 
fairly standard methods used in the literature. While the assumption of a 
'strictly quasi-star-shaped' technology (with respect to some golden rule) is 
surely a restriction, we verify in section 8 that in the canonical ('S-shaped' 
production function) case studied in the aggregative model by Clark 
(1971), Skiba (1978), Majumdar and Mitra (1982; 1983), Dechert and 
Nishimura (1983) and others, this assumption is automatically satisfied. 

2 THE MODEL 

The model is described by a pair (0, w) where 0 is a subset of.7(: x .7(:, 
and w is a function from.7(: to.7(. 0 is interpreted as a technology set, and 
was a utility function. 

A programme from k in .7(: is a sequence {x(t), yet + I)};' such that 
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x(O)= k; (x(t), yet + 1» is in Q for t ú =0; yet) ú =x(t) for t ú =1 

Associated with a programme {x(t), yet + N F õ ú = from k, is a sequence 
ô É E í F õ ú = defined by 

e(t) = yet) - x(t) for t ú =1 

We interpret (x, y, e) as the input, output and eonsumption levels respec-
tively. 

A programme {x(t), yet + N F õ ú = from k is stationary if 

x(t) = k for t ú =0, yet) = yet + 1) for t ú =1 

It follows that the associated (consumption) sequence ô É E í F õ ú = satisfies 

e(t) = e(t + 1) for t ú =1 

for a stationary programme. 
A programme {x*(t), y*(t + N F õ ú = from k is optimal if 

T 

lim inf ú = [w(e(t» - w(e*(t»] ú =0 
q | ú = 1=1 

for every programme {x(t), yet + N F õ ú = from k. 
A programme {x(t) , yet + N F õ ú =from k is a stationary optimal programme 

(SOP) if it is both stationary and optimal. It is a nontrivial stationary 
optimal programme if it is a SOP and w(e(1» > w(O). 

A stationary optimal stoek (SOS) is an element k in !J?':, such that there is 
a stationary optimal programme from k. It is a nontrivial stationary optimal 
stock if there is a nontrivial stationary optimal programme from k. 

The following assumptions are made on Q and w: 

Assumption 1 (0, 0) is in Q; (0, y) in Q implies y = O. 

Assumption 2 If (x, y) is in Q, and x' ú =x, and 0 ú =y' ú =y, then (x', y') is 
in Q. 

Assumption 3 Q is closed. 

Assumption 4 There is ú => 0, such that (x, y) in Q and Ilxll > ú =implies 
Ilyll < Ilxll· 
Assumption 5 There is (x, y) in Q, with y» x. 
Assumption 6 w is continuous and concave on !J?':. 
Assumption 7 If e' ú =e ú =0, then wee') ú =wee); if e' » e, then wee') > 
wee). 
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We now prove a convenient boundedness property which will be used 
subsequently. 

Lemma 2.1 If (x, y) is in Q, and Ilxll ú =ú I = then Ilyll ú =ú K =

Proof Suppose, on the contrary, there is (x, y) in Q, with Ilxll ú =ú I = but 
Ilyll > ú K = Then, we have 0 < Ilxll ú =ú X =so, definingx S = x ú =+ (lIs)][xlllxll], 
we have x S ú =x, and Ilrll = ú =+ (lis) > ú I Ñ ç ê =s = 1,2, .... Since (x, y) is 
in Q, (x S , y) is in Q for each s, and Ilyll < Ilxsll by Assumption 4. Since 
x S ú =ú ñ L ä ä ñ ä ä = == i as s ú =00, so Ilyll ú =Ilill = ú I = a contradiction. 

Corollary 2.1 If (x, y) is in Q, then Ilyll ú =max (1Ixll, ú F K =

Proof This follows from Assumption 4 and Lemma 2.1. 

Corollary 2.2 If {x(t), yet + I)}; is a programme from k, and IIkll ú =ú I =
then Ilx(t)11 ú =ú =for t ú =o. 

Proof Clearly I Ix(o)1 I = Ilkll ú =ú K = Also, if Ilx(t)11 ú =ú =for some t ú =0, then 
by Lemma 2.1, Ily(t + 1)11 ú =ú K = Since 0 ú =x(t + 1) ú =yet + 1), we obtain 
Ilx(t + 1)11 ú =ú K = This completes the proof by induction. 

Remark It is clear from Corollary 2.2, that if {x(t) , yet + I)}; is a 
programme from k, and Ilkll ú ú I =then Ily(t)11 ú ú I =and I Ic(t) I I ú =f3 for t ú =1. 

Corollary 2.3 If {x(t), yet + I)}; is a programme from k, then Ilx(t)11 ú =
max [llkll, ú z = for t ú =o. 

Proof Define W == max [llkll, ú z K = Clearly, Ilx(O)11 = Ilkll ú =W. Also, if 
Ilx(t)11 ú =W for some t ú =0, then by Corollary 2.1, Ily(t + 1)11 ú =max 
(1Ix(t)ll, ú F = ú =max (W, ú F = = W. Since 0 ú =x(t + 1) ú =yet + 1), we obtain Ilx 
(t + 1)11 ú =W. This completes the proof by induction. 

Remark It is clear that if {x(t), yet + I)}; is a programme from k, then 
I Iy(t) I I ú =max [llkll, ú z I = and I ic(t) I I ú =max [llkll, ú z = for t ú =1. 

3 A GOLDEN RULE 

A pair (x, y) in Q is called a golden rule if y ú =x and w(y - x) ú =w(y - x) 
for all (x, y) in Q satisfying y ú =x. 

Let A = {(x, y) in Q: y ú =x}. Then A is nonempty, since (0, 0) is in Q. 
If (x, y) is in Q with Ilxll > ú I = then Ilyll < Ilxll; so, for all (x, y) in A, Ilxll ú =
ú K = By Lemma 2.1, for all (x, y) in A, Ilyll ú =ú K = Thus A is bounded. A is 
closed since Q is closed. 
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Let B = {c: c = y - x, for (x, y) in A}. Since A is nonempty and 
compact, B is also nonempty and compact. Since B is a subset of :7(';, w is 
continuous on B and there is e in B such that wee) ú =w(c) for all c in B. 
That is, there is (x, y) in g, with y ú =x, such that w(y - x) ú =w(y - x) for 
all (x, y) in g, with y ú =x. Hence (x, y) is a golden rule. By definition 
w(y - x) ú =w(y - x) > w(O), since y » x by Assumption 5, and w is 
increasing in the sense of Assumption 7. 

Denote the utility level of a golden rule by w. Following Gale (1967), a 
programme {x(t), yet + I)}; from k in :7('; is called good if there is a real 
number, e, such that 

T 

ú = [w(c(t» - w] ú =e for q ú =1 

If (x, y) is a golden rule, and there is p in :7('; such that 

(i) w(y - x) - p(y - x) ú =w(c) - pc for all c E :7('; 
(ii) py - px ú =py - px for all (x, y) E g 

we say that the golden rule is price-supported and p is called a price-support 
of the golden rule (x, y). 

4 THE EXISTENCE OF A PRICE-SUPPORTED GOLDEN RULE 
AND A STATIONARY OPTIMAL STOCK FOR A CONVEX 
TECHNOLOGY 

As mentioned in section 1, a basic contribution of Gale (1967) was to 
emphasise the central role of the theory of dual variables for the existence 
of optimal programmes in convex models. The application of duality 
theory brought into sharp focus the importance of a price-supported golden 
rule; while the other applications of duality theory in Gale's paper were of 
interest on their own, Brock (1970) showed that they were not indispen-
sable to proving the existence of an optimal programme. Brock used the 
assumption of the uniqueness of the golden rule to establish his existence 
result, and subsequently Peleg (1973) showed that this assumption can also 
be dispensed with in proving the existence of a stationary optimal pro-
gramme. All these papers work in a framework which McKenzie (1986) 
calls the 'reduced' form. We provide here a self-contained theory of the 
existence of a price-supported golden rule and a nontrivial stationary 
optimal stock for the case where the technology set, g, is convex, and 
where utility is derived from consumption alone. Of course, we rely heavily 
on the techniques used in the above-mentioned papers. 

Lemma 4.1 Let (x, y) be a golden rule. If g is convex, then there is p > 0 
in :7(';, such that 
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(i) w(y - i) - pU - i) ú =w(c) - pc for all c in!7?: 
(ii) py - pi ú =py - px for all (x, y) in g 

Proof Let A = {c in !7?n: c = y - x, where (x, y) is in g}, !J = {c in !7?:: 
w(c) > w(Y - in. A is convex since g is convex; 11 is convex since w is 
concave. A and 11 are nonempty. Furthermore A and 11 are disjoint, by the 
definition of a golden rule. Hence, there is q in !7?n, q ::/= 0, and e in!7? such 
that 

qc :s:; e for all c in A 

qc ú =e for all c in 11 

(10.4.1) 

(10.4.2) 

Using (10.4.1), and the fact that U, i) is in A, we have q(Y - i)':S:; e. 
Using (10.4.2), and the fact that (y - i) + (lIs)e is in B for s = 1,2,3, ... 
(where e = (1, 1, 1, ... , 1) in !7?n), we have qU - i) ú =e. Hence 
e = q(y - i). By (10.4.2), q is in !7?:, and since q ::/= 0 we have q > O. By 
(10.4.1) and (10.4.2), we have 

q(y - x) :s:; q(y - i) for all (x, y) in g 

qc ú =qU - i) for all c in !7?:, with w(c) > w(y - i) 

Note that since (x, y) is in g, with Y » x, we get 

qU - i) > 0 

using (10.4.3) and q > O. 

(10.4.3) 

(10.4.4) 

(10.4.5) 

Define, next, the sets A' = {(a, b) in !7?2: a :s:; w(c) - w(y - i), b :s:; 
q (y - i) - qc, for some c in !7?:} and B' = {(a, b) in !7?2: (a, b) » O}. 
Clearly A is nonempty and convex. By (10.4.4), A' and B' are disjoint. 
Hence, there is (P, Q) in !7?;', (P, Q) ::/= 0 such that 

Pa + Qb :s:; 0 for all (a, b) in A' (10.4.6) 

We claim that P::/= O. For, if P = 0, then Q > 0, and by (10.4.6), Qb :s:; 0 for 
all (a, b) in A', so that 

b :s:; 0 for all (a, b) in A I (10.4.7) 

Let c = ú =(y - i), b = ú =q(y - i), and a = ï E ú =(y - i» - w(y - i). Then 

(a, b) is in A', and by (10.4.5), b > 0, which contradicts (10.4.7). Hence 
P ::/= 0; since P ú =0, we have P > O. Using (10.4.6), then, we have 
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a + (Q/P)b ú =0 for all (a, b) in A' (10.4.8) 

Defining P = (Q/P)q, we have pin:7(: and 

[w(c) - w(.y - x») + p[(.Y - x) - c) ú =0 for all c in:7(: (10.4.9) 

Rewriting this, we have 

w(y - x) - p(.Y - x) ú =w(c) - pc for all c in:7(: (10.4.10) 

Using Assumption 7 in (10.4.10), we get p > O. Furthermore, using 
(10.4.3) and the definition of p, 

py - px ú =py - px for all (x, y) in Q (10.4.11) 

This completes the proof of the lemma. 

Following the method of Brock (1970), one can prove the 'average 
turnpike property' of good programmes. 

Lemma 4.2. Suppose Q is convex. If {x(t), y(t + 1)}; is a good pro-
gramme from k in :7(:, and 

x(T) = [x(l) + .... + x(T»)/T } 
for T ú =1 

y(T) = [y(l) + .... + y(T»)/T 

and (x, y) is any accumulation point of {x(T), Y(T)};', then (x, y) is a 
golden rule. 

Proof Let (x, y) be an accumulation point of {x(T), ó E q F õ ú K =Since y(t) ú =
x(t) for t ú =1, we get y(T) ú =x(T) for T ú =1, and y ú =x. 

Also, (x(t), y(t + 1» is in Q for t ú =0, so ([x(O) + ... + x(T - l»)/T, 
[y(l) + .... + y(T»)/T) is in Q for T ú =1, by convexity of Q. Now, for 
q ú =1, 

x(T) = ([x(O) + .... + x(T - l»)/T) + ([x(T) - x(O»)/T) 

y(T) = [y(l) + .... + y(T»)/T 

Thus, if (x, y) is an accumulation point of {x(T), ó E q F õ ú I = it is also an 
accumulation point of {[x(O) + .... + x(T - l»)/T, [y(l) + .... + 
ó E q Ÿ F L q õ ú K = Since Q is closed, (x, y) is in Q. 

Since {x(t), y(t + N F õ ú = is good and w is concave, there is a real number 
9, such that for T ú =1, 
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T 

w(y(T) - x(T)) - w ú = l: [(w(y(t) - x(t)) - w)IT] ú =(9IT) (10.4.12) 
t=l 

Hence w(y - x) - w ú =o. Since (x, y) is in C, and y - x ú =0, we have 
w(y - x) - w ú =0, by definition of a golden rule. Hence w(y - x) = W, and 
so (x, y) is a golden rule. 

Lemma 4.3 Suppose (i, .9) in C is a golden rule, with price-support p. 
Suppose, further, that (i, y) in C is also a golden rule. Then p is a 
price-support for (i, y). 

Proof Since (i, .9) and (i, y) are golden rules, we have w(.9, i) = 
w(y - i). Since p is a price-support for (i, .9), we get by (i) of Lemma 
4.1, p(y - i) ú =p(.9 - i). By (ii) of Lemma 4.1, we have p(.9 - i) ú =p(.9 -
i). So p{.9 - i) = p(y - i). Hence, using (i) of Lemma 4.1, we have 

w(y - i) - p(y - i) = w(.9 - i) - p(.9 - i) ú =w(c) - pc for all 
c in:J?: 

Using (ii) of Lemma 4.1, we have 

py - pi = P.9 - pi ú =py - px for all (x, y) in C 

Hence, we have verified that p is a price-support for (i, y). 

Let (i,.9) be a golden rule with price-support p. Let AO = {(x, y) in C: 
(x, y) is a golden rule}. Let BO = {(x', y') in AO: px' ú =px for all (x, y) 
in A O}. Clearly, A ° is nonempty and compact. Hence, BO is nonempty. We 
will now show that any element (x', y') of ú =is a golden rule with the 
property that x' is a nontrivial stationary optimal stock. 

Theorem 4.1 Suppose the technology set C is convex. Then, there exists a 
golden rule (x', y'), such that x' is a nontrivial stationary optimal stock. 

Proof Since C is convex, there is a golden rule (i,.9) with price support p. 
We may define ú =as above, and verify that it is nonempty. Let (x', y') be 
any element of ú K =Then (x', y') is a golden rule, with price support p, by 
Lemma 4.3. Also, 

px' ú é ñ = (10.4.13) 

where (x, y) is any golden rule. 

Define {x'(t), y'(t + I)}; by x'(t) = x' and y'(t + 1) = y' for t ú =O. 
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Clearly, {x'(t), y'(t + 1)}; is a stationary programme from x'. We now 
claim that this is an optimal programme from x'. Suppose not. Then, there 
is a programme {x(t), yet + 1)}; from x', a real number e' > 0, and an 
integer N ú =1, such that 

N N 
e' ú = ú = [w(c(t)) - w(c'(t))] = ú = [w(c(t)) - w] for N ú =N(10.4.14) 

t=1 t=1 

Then {x(t), yet + 1)}; is a good programme. 
Using the fact that p is a price-support of (x', y'), we have for N ú =1, 

N N 
ú = [w(c(t)) - w] ú = ú = p[(y(t) - x(t)) - (y' - x')] 
t=1 t=1 

N 

= ú = ([py(t) - px(t - 1)] - [py' - px']) 
t=1 

+ px(O) - px(N) 

ú = px' - px(N) 

So, combining this with (10.4.14), we have 

px' ú =px(N) + e' for N ú =N (10.4.15) 

Let (x(T), yeT)) = ([x(l) + .... + x(T)]/T, [y(l) + .... + y(T)]/T), 
for T ú =1. Then, there is N ú =N, such that 

px' ú =px(N) + (e'/2) for N ú =N (10.4.16) 

Since {x(t) , yet + 1)}; is a good programme, any accumulation point (x, y) 
of {(x(T), ó E q F F õ ú = is a golden rule by Lemma 4.2, and by (10.4.13), 

px' ú é ñ = (10.4.17) 

On the other hand, by using (10.4.16), we have 

px' ú =px + (e' /2) (10.4.18) 

which contradicts (10.4.17) and establishes that {(x'(t), y' (t + 1)}; 
is an optimal programme. So x' is a stationary optimal stock. Since (x', y') 
is a golden rule, and there is (x, y) in Q with y » x, we have 
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W(y' - x') ú =w(y - x) > w(O) by Assumption 7. Hence x' is a nontrivial 
stationary optimal stock. 

5 THE NONEXISTENCE OF A NONTRIVIAL STATIONARY 
OPTIMAL STOCK FOR A NONCONVEX TECHNOLOGY 

When the technology set is nonconvex, the existence theorem of section 4 
breaks down. We provide in section 5 an example involving two goods, 
where the technology set, 0, and the utility function, w, satisfy Assump-
tions 1-7, but there is no nontrivial stationary optimal stock. 

Example 5.1 

Define the technology set 0 = {(x, y) E 7(;' X 7(;': Az:S;; x, Bz ú =y, ez :s;; 1 
and min (Zl> Z2) = 0 for some z E 7(;'}. Define the utility function w(cI> c2) 

= c1 + C2 for all (Cl> c2) E 7(;'. Then (0, w) satisfy assumptions 1-7. 
We note first that x = (1,0), j = (2, 1), C = (1, 1),2 = (1,0) and wee) = 

2 characterises the unique golden rule. To see this, observe that if 22 > 0, 
then 21 = 0, and Az = (0, 22), while B2 = (422' 0). But, then j ú =x is 
contradicted, since j2 :$; 0 < 22 :$; x2. Thus, 22 = 0 and ZI :$; 1. In this case, j 
:$; (221' 21) and x ú =(21) 0), so e :$; (21) 21) and wee) :$; 2z1" Since this is 
clearly a maximum when 21 = 1, we must have 2 = (1,0). It follows readily 
now that x = (1, 0), j = (2, 1), e = (1, 1) and wee) = 2. 

Second, we note that the golden rule does not have a price-support. For 
if fi was a price-support of (x, j), then we must have fi = (1, 1) since 
w(cI> c2 ) = C1 + C2 and e» o. Thus fij - fii = 3 - 1 = 2. Now, let z = 
(0, 1), x = Az, y = Bz. Then (x, y) E 0, and further x = (0, 1) while 
y = (4,0). Thus fiy - fix = 4 - 1 = 3 > 2 = fij - fix, a contradiction. 

Finally, we note that there is no nontrivial stationary optimal stock. For 
if x > 0 is such a stock, then there is y E 7(;', z E 7(;' such that (x, y) E 0 and 
y ú =x, and by the argument used above, Z2 = 0 and 0 < ZI :$; 1. Thus, along 
the corresponding stationary programme there is a stationary utility level 
of w(y - x) :s;; 2z1• Now, we define a sequence {z(t)}; as follows: 

z(t) = ZI (1, 0) for t = 0, 2, 4, .. . 

z(t) = ZI (0, 1) for t = 1, 3, 5, .. . 

Also, define x(t) = Az(t) and yet + 1) = Bz(t) for t ú =O. Then clearly (x(t), 
yet + 1») E 0 for t ú =O. Also, we can check that 
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yet + 1) - x(t + 1) = Z1 (2,0) for t = 0,2,4, ... . 

yet + 1) - x(t + 1) = Z1 (3, 0) for t = 1, 3, 5, ... . 

Thus {x(t) , yet + N F õ ú =is a programme from i, and furthermore, for T;3!: 2, 

T 

I [w(c(t» - wee)] ;3!: Z1 
t=1 

so {x, ó õ ú =is not an optimal programme from x. Thus, there is no nontrivial 
stationary optimal stock. 

6 THE EXISTENCE OF A NONTRIVIAL STATIONARY 
OPTIMAL STOCK FOR A NONCONVEX TECHNOLOGY: 
THE AGGREGA TIVE CASE 

The example of section 5 is rather conclusive in destroying any hope of a 
general existence theorem under nonconvexities. The analysis of section 6 
demonstrates that in an aggregative model with a nonconvex technology, 
the existence of a nontrivial stationary optimal stock can be proved with no 
restriction on the 'type' of nonconvexities that may be present. The 
framework is thus more general than the one treated in Majumdar and 
Mitra (1982); the method of proof is also quite different (since an entirely 
'primal' approach is used) and may be of independent interest. 

The framework is the same as described in section 2, except that here we 
have the special case of n = 1. For each x in ú H I =consider the set Y(x) = {y 
á å ú H W=(x, y) is in Q}. By Corollary 2.1, Y(x) is bounded. Since Q is closed, 
so is Y(x). Since (0, 0) is in Q, and Q has the 'free-disposal' property (see 
Assumption 2), so 0 is in Y(x). Thus, 

f(x) = Maxy 
subject to yin Y(x) 

defines a function from ú H = to ú H K = It is generally called a production 
function. One can check that Q = {(x, y) in ú X W= y :!S; f(x)} by using the 
'free-disposal' property. It is fairly easy to verify thatf(O) = 0, and thatfis 
nondecreasing and upper semicontinuous ç å ú H K =Furthermore, there is ú => 
0, such that for x > ú I Ñ E ñ F =< x, by Assumption 4. By Assumption 5, there 
is x > 0, such that f(x) > x. 

It was shown in section 3 that the set of golden rules is nonempty. If 
(i, y) is a golden rule, then y = f(i) , by Assumption 7 and the definition of 
f. Thus, Y - i = f(i) - i. By definition of a golden rule, f(i) - i ;3!: f(x) -
x, for all x ;3!: 0 such thatf(x);3!: x. This is because for any such x, (x, y) == (x, 
f(x» is in Q, and y ;3!: x. If x ;3!: 0, andf(x) < x, thenf(i) - i ;3!: f(x) - x> 0 
;3!: f(x) - x. Thus, in fact, if (i, y) is a golden rule, then 
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f(x) - x = j - x ú =f(x) - x for all x ú =0 (10.6.1) 

Let AO = {(x, y): (x, y) is a golden rule}. The set is nonempty; it is closed. 
It is clearly bounded. For, if (x, j) is a golden rule, thenf(x) - i ú =I(x) - x 
> 0, and so 0 :s:;; x :s:;; p; by Lemma 2.1, then, 0 :s:;; j :s:;; p. Let]JJ = {x: there is 
some y, such that (x, y) is in AO}. ]JJ is nonempty, closed and bounded, 
since A ° is nonempty, closed and bounded. Thus a minimum element of ]JJ 
is well-defined. For the rest of this section, call this element i, and define 
j = f(x), e = I(x) - i = Y - i. Then, (i, j) is a golden rule with the smallest 
input level. (Note that e > 0, and so x > 0.) 

For any programme {x(t), yet + 1)}; from x, define the sequences 
{a(t)}; {pet)}; as follows 

aCt) = [x - x(t)] for t ú =0 

pet) = e - [f(x(t» - x(t)] for t ú =0 

Using (10.6.1), pet) ú =0 for t ú =o. 

(10.6.2) 

(10.6.3) 

We can now show that x is a nontrivial stationary optimal stock. Define a 
sequence {x(t), jet + 1)}; by [i(t) , jet + 1)] = [i, j] for t ú =O. Then {x(t), 
jet + 1)}; is clearly a stationary programme from x with c(t) = e for t ú =1. 
We will prove that it is also an optimal prognimme from i. 

Suppose, on the contrary, that there is a programme {x(t), yet + 1)}; 
from x, a real number e > 0, and an integer N ú =1, such that 

N _ 

e:S:;; l: [w(c(t» - w(e)] for N ú =N (10.6.4) 
t=1 

Since w is concave, so by Jensen's inequality 

N w [ ú =C(t)/N] ú = ú = w(c(t» for N ú =1 (10.6.5) 

Combining (10.6.4) and (10.6.5), we have for N ú =N 

w [ ú N = C(t)/N] ú =wee) + (e/N) > wee) (10.6.6) 

Since w is increasing, we get for N ú =N 
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(10.6.7) 

Thus, for N ú =N, we have 

N 

L c(t) > Nt (10.6.8) 
t=1 

Observe now that for N ú =1, 
N N-1 

L c(t) = [x - x (N)] + L [y(t + 1) - x(t)] 
t=1 

N-1 

ú = [x - x(N)] + L [f(x(t» - x(t)] 
t=O 

Thus, recalling equation (10.6.3), we have for N ú =1, 
N N-1 

L c(t) ú =[x - x(N)] + Nt - L ú E í F = (10.6.9) 
t=1 t-O 

Since ú E í F = ú =0 for t ú =0, we have for N ú =1, 

N 

L c(t) ú =[x - x (N)] + Nt (10.6.10) 

Combining (10.6.8) and (10.6.10), we have for N ú =FI, 

a(N) = [x - x(N)] > 0 (10.6.11) 

In particular, a(N) > 0, and so x(N) < x, while y(FI + 1) - x(N) ú =
f(x(N» - x(N) ú = t: Thus, by the definition of x, we have f(x(N» -
x(N) < c, so that ú E k F => O. 

Combining (10.6.8) and (10.6.9), we have for N ú =FI, 

N-1 

L ú E í F = < [x - x(N)] (10.6.12) 
t=O 

Since ú E í F = ú =0 for t ú =0, ú E k F => 0, we have for N ú =N + 1, 

o < ú E k F =< [x - x(N)] (10.6.13) 
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Let i = x - fl(N); then x(N) ú =i for N ú =N + 1. The function g(x) == 
[e - [I (x) - x]] is lower semicontinuous (in x) on the nonempty, compact 
set 0 ú =x ú =i. Hence g attains a minimum on this set; call this minimum 
value, b. Then, since 0 ú =x(N) ú =i for N ú =N + 1, we get ú E k F =ú =b for N ú =
N + 1. By the definition of a golden rule, b ú =0, while by the definition of 
x, and i < x, it follows that b > O. Using this in (10.6.12), we have for 
k ú k H N K =

[N - (N + 1)]b + ú E k F =< [x - x(N)] ú =X (10.6.14) 

Clearly, for large N, (10.6.14) leads to a contradiction. Hence {x(t) , 
yet + I)}; is an optimal programme from x. Thus, x is a stationary optimal 
stock. Since e = f(x) - x ú =f(x) - x > 0, and w is increasing, wee) > w(O). 
Hence, x is a nontrivial stationary optimal stock. 

7 THE EXISTENCE OF A PRICE-SUPPORTED GOLDEN 
RULE FOR A NONCONVEX TECHNOLOGY: 
THE MULTI-SECTORAL CASE 

The main purpose of section 7 is to present a set of sufficient conditions on 
our multi-sectoral economy under which there exists a price-supported 
golden rule, even though the technology set is nonconvex. We also present 
a necessary and sufficient condition for our multi-sectoral economy to have 
this property. Finally, we discuss some examples which clarify the role of 
the above-stated conditions in our existence result. 

Crucial to the development of our theory is the assumption that the 
technology set is 'quasi-star-shaped' with respect to some golden rule. It 
seems appropriate at this point to discuss this concept in some detail. 

The technology set, Q, is star-shaped with respect to some golden rule 
(x, y), if (x, y) in Q implies that [I..X + (1 - I..)x, I..y + (1 - I..)y] is in Q for 
every 0 < I.. < 1. Technology sets with this property can display significant 
nonconvexities in production. Here is an example. 

Let I: :7?+ --+ :7?+ be defined as follows: 

f(x) = 3x for 0 ú =x ú =1 
f(x) = 4x - 1 for 1 ú =x ú =1-
f(x) = 2x + 2 for 1- ú =x ú =2 
I(x) = E J ú J F = x + 5 for x ú =2 

The technology set, Q, is then defined as follows: 

Q = {(x, y) in :7?;': y ú =f(x)} 

It can be checked that Q satisfies Assumptions 1-5. Letting w be any 



Tapan Mitra 229 

concave, increasing and continuous function from ú H = to ú I = w satisfies 
Assumption 6 and Assumption 7. It can be verified that [f(x) - x] attains a 
maximum at x = 2, and that there is a unique golden rule, given by (.£,y) = 
(2,6). It is easy to check formally that 0 is star-shaped with respect to the 
golden rule point (.£, y). It is clear that 0 is a nonconvex technology set. 

However, the assumption that 0 is star-shaped with respect to some 
golden rule excludes other interesting technologies that we would certainly 
like to include in the theory. Here is an example. Let f: ú H = ú =ú H = be 
defined as follows: 

f(x) = x + (1/2)x2 - (1/2)x3 for 0:::; x:::; 1 

f(x) = (1/2)x + (1/2) for x ú =1 

The technology set, 0, is defined as follows: 

o = {(x, y) in ú > W=y :::; f(x)} 

Let w be any increasing, continuous and concave function from ú H = to ú K =
Then (0, w) satisfy assumptions 1-7. It can be verified that [f(x) - x] is 
maximised at x = (2/3), and that there is a unique golden rule, defined by 
(x, y) = [(2/3), (20/27)]. Now, the technology set is clearly not star-shaped 
with respect to the golden rule, (x, y). For example, taking (0, 0) in 0, we 
note that the line segment joining (0, 0) to (x, y) does not wholly lie in O. 
To be precise, for 0 < 'A < (1/2), [AX + (1 - 'A) • 0, 'Ay + (1 - 'A) . 0] does not 
belong to 0, while for 1 > 'A ú =(1/2), [AX + (1 - 'A) • 0, 'Ay + (1 - 'A) . 0] 
does belong to O. 

Now, this example represents the canonical ('S-shaped') case discussed 
in the aggregative model by Skiba (1978), Majumdar and Mitra (1982; 
1983), Dechert and Nishimura (1983), and others. Consequently, one is 
reluctant to make an assumption which rules out this case. The example 
just discussed, however, indicates that it might be justifiable to assume that 
given (x, y) in 0, a convex combination of (x, y) and (x, y), 'sufficiently 
close to (x, y)', would also be in O. This leads us naturally to the notion of 
a 'quasi-star-shaped' technology. 

The technology set, 0, is quasi-star-shaped with respect to some golden 
rule (x, y) if (x, y) in 0 implies that there is 0 < 'A(x, y) :::; 1 such that, for 0 
< 'A < 'A(x, y), (Ax + (1 - 'A)x, 'Ay + (1 - 'A)y) is in O. (Note that if for each 
(x, y) in 0, 'A(x, y) = 1, then 0 is star-shaped with respect to (x, y». 

We will show, in the next section, that for the S-shaped production 
function case, the golden rule is unique and the technology set is quasi-
star-shaped with respect to this golden rule. (In fact, a 'strict' version of 
this property will be verified there.) Given this, we feel somewhat justified 
in proceeding with the following assumption in the multi-sectoral case. 
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Condition QS (Quasi-Star-Shaped Technology) The technology set, Q, is 
quasi-star-shaped with respect to some golden rule, (i, y). 

In addition to the above condition, we also use the following two 
'regularity' conditions to obtain a price-supported golden rule. 

Condition PC (Positive Consumption at Golden Rule) If (i, y) is any 
golden rule, then y » i. 

Condition S (Smoothness of Utility Function) The utility function, w, is 
twice continuously differentiable on ú ú H K =

Proposition 7.1 Assume that Conditions QS, PC and S are satisfied. Then 
there is p in ú ú I =p > 0, such that 

w(Y - i) - p(y - i) ú =w(c) - pc for all c in ú ú =

py - Pi ú =py - px for all (x, y) in Q 

(10.7.1) 

(10.7.2) 

Proof Note that w is concave and continuous on ú ú =and differentiable on 
ú ú H I =and (Y - i) » O. So for all c in ú ú I =

w(c) - w(Y - i) ú =Dw(y - i) [c - (y - i)] 

Hence, defining p == Dw(Y - i), we have 

w(y - i) - P(Y - i) ú =w(c) - pc for all c in ú ú =

Using Assumption 7, we clearly have P in ú ú K = Also, by Assumption 7, 
P > O. This establishes (10.7.1). 

We will next show that for all (x, y) in Q, 

py - px ú =py - Pi 

Suppose, on the contrary, there is some (x' , y') in Q and e > 0, such that 
[py' - px'] ú =[py - Pi] + e. Since Q is quasi-star-shaped with respect to 
(i, y), there is 0 < ')... (x', y') ú =1, such that for 0 < ')... < ')...(x', y'), we have 
[A.X' + (1 - ')...)i, ')...y' + (1 - A.)y] in Q. 

Define B = {c in ú ú W= (1/2)(5' - i) ú =c ú =2(Y - i)}. Clearly, B is a 
nonempty, compact subset of ú ú H K =Consequently, there is b > 0, such that 
for all z in B, 

[(y' - x') - (Y - i)]D2 w(z) [(y' - x') - (Y - i)] ú =- b (10.7.3) 

using the fact that w is twice-continuously differentiable on ú ú H =and so, 
given any h in ú å I =h'D2w(z)h is continuous (in z) on B. 
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In view of the fact that (y - x) »0, one can now choose 0 < A < A(x', 
y') [with A sufficiently close to 0] so that 

(i) [Ax' + (1 - A)x, AY' + (1 - A)Y'] is in Q 
(ii) [AY' + (1 - A)Y] - [Ax' + (1 - A)x] is in B 
(iii) Ab:e: 9 

Fixing this A, define (x", Y") = [Ax' + (1 - A)x, AY' + (1 - A)Y] , 
c' = (Y' - x') in :J(n, e' = (y" - x") in Wg E ú H I =t = (y, x) in Wg E ú H I =and write, by 
Taylor's theorem, 

w(e') - w(t) = Dw(t) [e' - t] + (1/2) [e' - t]D2 w(z) [e' - t] 

where z is some convex-combination of e' and t. Noting that (e' - c) = 
A(c' - t), we have 

w(e') - w(t) = Dw(c) A(c' - c) + (1/2) 1..2 (c' - t)D2 w(z) (c' - c) 

Now, using (10.7.3) we have 

w(e') - w(c) ú =1..9 + (1/2)1..2 [- b] 

= 1..[9 - (1/2)Ab] 

ú =1..[9 - (9/2)] 

= 1..9/2> 0 

Hence, we have (x", y") in Q with y" - x" = e'in B (so that y" - x" ú =0), 
and w(y" - x") > w(Y - x). This contradicts the fact that (x, y) is a golden 
rule, and establishes (10.7.2). 

Remark It is clear from the proof of Proposition 7.1 that we used the 
strict positivity of consumption only at the golden rule (x, y), with respect 
to which the technology set is assumed to be quasi-star-shaped in Condi-
tion QS. Thus, Condition PC can be relaxed somewhat, and in fact 
condition QS and PC can be replaced by the following single condition: the 
technology set is quasi-star-shaped with respect to some golden rule, (x, y), 
and y » X. Of course, if there is a unique golden rule, there is no 
difference between these alternative formulations. 

The above result provides a set of sufficient conditions under which a 
golden rule has a price-support. The chief advantage is that each condition 
can be checked fairly easily in concrete examples. At the same time, it 
might be useful to provide a necessary and sufficient condition for a golden 
rule to have price-support. We present below one such result which is fairly 
easy to obtain. 
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Recall that a golden rule is an input-output pair (x,))) E g which solves 
the problem: 

max w(y - x) 

Subject to (x, y) E g 

and y ú =x 
) (P) 

Let con g denote the convex-hull of g, and consider the problem: 

max 

Subject to 

and 

w(y - x) ) 
(x, y) E con g (PI) 

ó ú ñ =

Proposition 7.2 Suppose (x, ))) solves problem (P). Then (x, ))) has a 
price-support if and only if (x,))) solves problem (PI). 

Proof First, suppose that (x,))) has a price-support p. Let (x, y) E con g, 
with y ú =x. Then, there exists (x', t,) E g and 0 ú =AS ú =1, for s = 1,2, ... , 
S such that 

s s 
l: AS = 1 and (x, y) = l: AS(x', y) 
s=1 s=1 

Since P is a price-support of (x, ))), we get 

P<Y - x) ú =P(y - x') for s = 1, ... , S (10.7.4) 

Using the inequalities in (10.7.4), we get 

P<Y - x) ú =P(y - x) (10.7.5) 

Also, since P is a price-support of (x, ))), we have 

w()) - x) - w(y - x) ú =P<Y - x) - P(y - x) (10.7.6) 

Using (10.7.5) and (10.7.6), w<y - ñ F ú =w(y - x). Since (x,))) E con g and 
y ú =x, we can then conclude that (x, ))) solves (P'). 

Next, suppose (x,))) solves (P'). Since con g is convex and (x, y) E con 
g, we can use the argument employed in Lemma 4.1 to get P E ú ú =which 
provides a price-support to (x, y). 

In section 5, we provided an example (Example 5.1) of a multi-sectoral 
economy for which the (unique) golden rule does not have a price-support. 
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Note that in the economy described there, Condition PC is satisfied as is 
Condition S. But the technology set is not quasi-star-shaped with respect to 
the golden rule. Thus Example 5.1 provides a justification for the use of 
Condition QS in establishing Proposition 7.1. In terms of the characterisa-
tion provided in Proposition 7.2, we note that (x, y), defined by x = (0.5, 
0.5), y = (3,0.5), is in con Q, withy - x = (2.5,0), and w(.Y - x) = 2.5 > 2 
= w(Y - x) so that (x, y) does not solve problem (P') (It can be checked 
that (x, y) does, in fact, solve (P').) 

In the following two examples, we provide our justification for the use of 
our regularity conditions (Condition PC and Condition S) in establishing 
Proposition 7.1. 

Example 7.1 

utA ú = [: : :] , B= [ 04 41 0
8

] , e = (1, 1, 1) 

Define the technology set Q = {(x, y) E ú W=x ú WW=Az ú =x, Bz ú =y, ez ú =1 
and min (zu Z3) = 0 for some z E ú Wõ K =Define the utility function w(c1, cz) 
= C1 + Cz for (cu cz) E ú WK =Then (Q, w) satisfy Assumptions 1-7. 

We note, first, that Z = (0, 1,0), x = (1, 1), y = (4, 1), e = (3,0) and 
wee) = 3 characterises the (unique) golden rule. To see this note that Z3 = O. 
For if Z3 > 0, then Zl = 0, and we have Zz + 2Z3 ú =Xz while Zz ú =Yz, so that y 
ú =x is clearly violated. Thus Z3 = 0, and so e = y - x ú =(B - A)z = 
[3zz - 2zu 4zJ This means wee) ú =3zz + 2z1; this last expression is 
clearly maximised uniquely at Zl = 0, Zz = 1. Now, it readily follows that 
x = (1, 1), Y = (4, 1), Z = (0, 1,0), e = (3,0) and wee) = 3 characterises 
the golden rule. 

Second, we observe that the golden rule (x, y) does not have a price-
support. To see this, suppose j> were a price-support of (x, y). We define 
z = (1,0,0), x = Az = (2,0); Y = Bz = (0,4), so that (x, y) E Q. Similarly 
we define z' = (0, 0, 1), x' = Az' = (0, 2) and y' = Bz' = (8, 0), so that 
(x', y') E Q. Using the fact that j>y - j>x ú =j>y - j>x, we must have 3j>1 ú =
4j>z - 2j>1' so that 5j>1 ú =4j>z. Similarly, using the fact that j>y - j>x ú =j>y' -
j>x', we must also have 3j>1 ú =8P1 - 2pz, so that 2Pz ú =5P1' Combining the 
two pieces of information, P1 = 0 and pz = O. But then, we must have 

w(c) = w(c) - pc ú =wee) - pc = wee), for all c E ú W=

which is contradicted by choosing, for instance, c = (3, 1). 
It can be checked in this example that Condition QS is satisfied as is 

Condition S. However, Condition PC is violated, since e = (3, 0) is the 
golden rule consumption vector. This example thus shows why Condition 
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PC was needed to establish the price-support property of the golden rule in 
Proposition 7.1. In terms of Proposition 7.2, we note that (i, y), defined by 
i = (2/3, 4/3), y = (16/3, 4/3), is in con 0, with Y - i = (14/3, 0), and w(y 
- i) = 14/3 > 3 = w(c), so that (i, y) does not solve problem (P'). (It can 
be checked that (i, y) defined above solves (P').) 

Example 7.2 

ì í ^ ú =[: : :] , B= [ 3
5 

44 53] , e = (1, 1, 1) 

Define the technology set 0 = {(x, y) E ú ú =x ú ú W=Az::!6; x, Bz ú =y, ez::!6; 1 
and min (ZI> Z3) = 0 for some Z E ú > õ K = Define the utility function 
w(cI> c2) = min [cl, c2] for (Cl> c2) E ú õ K =Then (0, w) satisfy Assumptions 
1-7. 

We first note that there is a unique golden rule given by i = (1,1), Y = 
(4,4), Z = (0, 1,0), c = (3,3), w(c) = 3. To see this, consider any (x, y) E 
o with y ú =x and w(y - x) ú =3. Let z be the associated 'activity-levels' 
vector. Then either (i) Z3 = 0 or (ii) Zl = O. Consider case (i); here we have 
(3 + Zl + Z2) ::!6; (3 + Xl) ::!6; Yl ::!6; 3Zl + 4Z2 = 3(Zl + Z2) + Z2 ::!6; 3 + Z2. Thus 
Zl = 0, and so Z = z, (x, y) = (i, y), y - x = c and w(y - x) = 3. Case (ii) 
can be worked out symmetrically. 

Second, we note that the golden rule (i, y) does not have a price-
support. Suppose P is a price support of (i, y). We can define Z = (1,0,0), 
x = Az = (1,0), Y = Bz = (3,5). Then (x, y) E 0 and so py - pi ú =py -
px. This yields 3Pl + 3p2 ú =3Pl + 5p2 - PI> so thatpl ú =2p2. Similarly, we 
can define z' = (0,0, 1), x' = Az' = (0, 1), y' = Bz' = (5,3). Then (x', y') 
E 0 and so py - pi ú =py' - px'. This yields 3Pl + 3p2 ú =5Pl + 3p2 - P2' so 
that P2 ú =2p!" Combining the two pieces of information, we get P2 ú =2Pl ú =
4p2' so that P2 = 0 and Pl = O. But then we must have 

w(c) = w(c) - pc ::!6; w(c) - pc = w(c) for all c E ú ú =

which is contradicted by choosing, for instance, c = (4,4). 
It can be checked in this example that Condition QS is satisfied as is 

Condition PC. However, Condition S is violated, since w is not differenti-
able. This example thus shows why condition S was needed to establish the 
price-support property of the golden rule in Proposition 7.1. In terms of 
Proposition 7.2, we note that (i,y), defined by i = (0.5, 0.5H = (4,4) is in 
con 0, with y - i = (3.5,3.5), and w(y - i) = 3.5> 3 = w(c), so that (i, 
y) does not solve problem (P'). (It can be checked that (i, y) defined above 
solves (P').) 
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We are now in a position to present the main existence result of this study. 
We establish the existence of a nontrivial stationary optimal stock in the 
multi-sector case, under nonconvexities in production. In obtaining this 
result, we will rely heavily on the price-support property of a golden rule 
established in Proposition 7.1. Thus, for the rest of this section, we assume 
that Conditions PC and S hold. For technical reasons, we actually need the 
technology set to satisfy a stricter condition than Condition QS. Let us say 
that the technology set, g, is strictly quasi-star-shaped with respect to some 
golden rule (x, y) if (x, y) in g, (x, y) =1= (x, y) implies that there is 0 < A 
(x, y) ú =1 such that for 0 < A < A(X, y), we have (Ax + (1 - A)X, y') E g 
with y' » AY + (1 - A)Y. 

We now show that for the canonical (S-shaped production function) 
case, the technology set satisfies this restriction in the aggregative model. 
Letfbe a function from.'A'+ to .'A'+, such thatf(O) = 0, fis increasing, twice 
continuously differentiable for x ú =0, andf'(oo) < 1 ú Ñ D E MF =< 00. Further-
more, suppose there is kl such that 0 < kl < 00; f"(x) > 0 for 0 ú =x < k1 ; 

f"(x) < 0 for x> k1 ; andf"(x) = 0 for x = kl" Let g = {(x y) in .'A'!: y ú =
f(x)}. It can be checked that there are uniquely determined numbers x, 
ú I â O D =such that 0 < kl < k2 < X < ú =< oo;f'(x) = N X Ñ E ú F == ú X =and,f'(k2) = 
[f(k2)1k2]. Furthermore, for 0 ú =x < x,f'(x) > 1; and for x> x,f'(x) < 1; 
for 0 < x < ú I =x < f(x) < ú I = and for x > ú I = ú =< f(x) < x; for 0 < x < k2' 
f'(x) > [f(x)lx], and for x > k2' f'(x) < [f(x)lx]. Also, for 0 < x < k2' 
[f(x)lx] is increasing, and for x> k2' [f(x)lx] is decreasing; for 0 ú =x < ku 
f'(x) is increasing, and for x > ku f'(x) is decreasing. 

Note that 0 < k2 < x, so that 0 < [kzlx] < 1. Define !.I. = 1 - [kjx]; then 0 
< !.I. < 1. Define hex) = [f(k2)1k2]X for 0 ú =x ú =k2; hex) = f(x) for x ú =kz. 
Then h is a concave function on .'A'+; furthermore it is strictly concave for x 
ú =k2. Since x > k2' we have f(x) = hex). So, [x, y] == [x, f(x)] is a golden 
rule; and in fact it is the only golden rule, since h is concave, and h"(x) = 
f"(x) < O. 

We check now that g is strictly quasi-star-shaped with respect to (x, y). 
Let (x, y) be in g, with (x, y) =1= (x, y). Then defining A(X, y) = !.I., we note 
that for 0 < A < A(X, y), (1 - A) > (1 - !.I.) = (kjx), so that (1 - A)X> k2' 
and so Ax + (1 - A)X > k2 • 

There are now three cases to consider: (a) x = 0, (b) 0 < x < k2' 
(c) X ú =k2 • 

In case (a), flAX + (1 - A)X] = f[(1 - A)X] = {f[(1 - A)x]/[(1 - A)X]} 
(1 - A)X > [f(x)lx] (1 - A)X [since x > (1 - A)X > k2' and [f(x)lx] is 
decreasing in x for x ú =k2] = (1 - A) f(x) = Af(x) + (1 - A)f(x) ú =AY + (1 -
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A)Y. Thus, (Ax + (1 - A)X, y') is in C, with y' > AY + (1 - A)Y. 
In case (b), we have flAX + (1 - A)X] = h[AX + (1 - A)X] ú =Ah(x) + 

(1 - A)h(x) > Af(x) + (1 - A) f(x) [usingf(x) < h(x) for 0 < x < k2] ú =AY 
+ (1 - A)Y. Thus, (AX + (1 - A)X, y') is in C, with y' > AY + (1 - A)Y. 

In case (c), if x =1= X, flAx + (1 - A)X] = h[Ax + (1 - A)X] > Ah(x) + 
(1 - A) h(x) (since h is strictly concave for x ú =k2' and x =1= x) ú =Af(x) 
+ (1 - A)f(x) ú =AY + (1- A)Y. Ifx = x, buty =1= y, theny <f(x). SO,f[AX 
+ (1 - A)X] = h[AX + (1 - A)X] ú =Ah(x) + (1 - A) hex) ú =Af(x) + (1 - A) 
f(x) > AY + (1 - A)Y. Thus, in either subcase, flAX + (1 - A)X] > AY + 
(1 - A)Y. Thus, (Ax + (1 - A)X, y') is in C, with y' > AY + (1 - A)Y. We 
have thus checked that in the canonical (S-shaped production function) 
case, C is indeed strictly quasi-star-shaped with respect to the golden rule 
for the aggregative model. 

In order to obtain our main result on the existence of a nontrivial 
stationary optimal stock, we maintain the following assumption, for the 
rest of this section. 

Condition SQS (Strictly Quasi-Star-Shaped Technology) The tech-
nology set, C, is strictly quasi-star-shaped with respect to some golden 
rule, (x, y). 

In fact, it is easy to see that given Condition SQS, (x, y) is the only golden 
rule. For if (x, y) is some other golden rule [(x, y) =1= (x, y)], then there is 
0< A(X, y) ú =1, such that for 0 < A < A(X, y), [x', y'] == [Ax + (1 - A)X, y'] 
is in C, withy' »AY + (1 - A)Y. But, then, c' == [y' - x']» A[Y - x] + 
(1 - A) [y - x] ú =O. Hence, w(c') > W[A(Y - x) + (1 - A) (y - x)] (by 
Assumption 7) ú =AW(Y - x) + (1 - A)W(Y - x) = w(Y - x) (since w(y - x) 
= w(Y - x» which contradicts the fact that (x, y) is a golden rule. 

In view of this observation, there is only one golden rule, and for the rest 
of this section, we shall refer to it as (x, y). (Note that Condition PC now 
translates simply to the assumption that y > > x.) 

The strategy adopted to establish our existence theorem can be roughly 
described as follows. Recalling the result for the case of a convex tech-
nology set (see section 4), we note that the convexity of the technology set 
was exploited heavily in (a) providing a 'price-support' for the golden rule; 
(b) proving an 'average turnpike property'. Now, our procedure is to note 
that convexity of C is not essential to (a); this result can be proved if 
convexity of C is replaced by Conditions QS, PC and S (as we showed in 
Proposition 7.1). Convexity of C does seem essential for result (b). So, we 
avoid this route, and rather follow the earlier literature (particularly 
Atsumi, 1965, and McKenzie, 1968) in establishing a 'value-loss' lemma 
(see Lemma 8.2) using the fact that C is strictly quasi-star-shaped with 
respect to (x, y). (This is precisely where the 'strictness' is needed.) This 
yields the asymptotic convergence (turnpike property) of the input-output 
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sequence of a good programme to the golden rule input-output pair (x, y). 
(See Proposition 8.1.) The method of Gale (1967, Theorem 8) is very 
similar, although he does not explicitly prove a 'value-loss' lemma. The 
existence theorem can then be proved following the method used in the 
aggregative model by Majumdar and Mitra (1982); the method of Gale 
(1967, Theorem 9), when specialised to our problem, is very similar. 

Given any e in ú ú I =define aCe) = [w(Y - x) - P(Y - x)] - [wee) - pc]. 
Given any (x, y) in Q, define b(x, y) = [py - px] - [py - px]. Clearly, 
aCe) ú =0 for all e in ú ú =and b(x, y) ú =0 for all (x, y) in Q, by Proposition 
T K N ú =

Lemma 8.1 Suppose (x, y) is in Q. Then, 

b(x, y) = 0 iff (x, y) = (x, y) (10.8.1) 

Proof If (x, y) = (x, y), then b(x, y) = b(x, y) = 0, by definition of b. To 
prove the converse, suppose (x, y) =1= (x, y), but b(x, y) = o. Then 

py - px = py - px (10.8.2) 

Then there is 0 < A(x, y) ú =1, such that for 0 < A < A(x, y), (Ax + 
(1 - A)x, y') is in Q, with y' > > AY + (1 - A)Y. Since p > 0, we get py' -
P[Ax + (1 - A)x] > P[AY + (1 - A)Y] - P[Ax + (1 - A)x] = A[PY - px] + 
(1 - A) [py - px] = [py - px], by equation (10.8.2). This contradicts 
Proposition 7.1 and establishes the result. 

Lemma 8.2 Let J be a nonempty, compact subset of Q. Given any E > 0, 
there is TJ > 0, such that (x, y) in J, and lI(x, y) - (x, y)1I ú =E imply 
b(x, y) ú =TJ. 

Proof If (x, y) is inJ, and II (x, y) - (x, y)1I ú =E, then (x, y) =1= (x, y), and so 
b(x, y) > 0 by Lemma 8.1. Thus, if Lemma 8.2 were not valid, there would 
be a sequence (XS, yS) in J, with II (XS, yS) - (x, y)1I ú =E, such that b(xS, yS) 
ú =0 as s ú =00. Since J is compact, there is a subsequence (XS', yS') of 
(XS, yS) converging to some (x*, y*) inJ. Since II(xS ', yS') - (x, y)1I ú =E for 
all s', so lI(x*, y*) - (x, y)1I ú =E. Hence, b(x*, y*) > O. 

On the other hand, b(xS' , yS') ú =0 as s' ú =00. Since (XS' , yS') converges 
to (x* , y*) as s' ú =00, we get b(x* , y*) = 0, a contradiction, which estab-
lishes the Lemma. 

Remark Lemma 8.2 is our version of the well-known 'value-loss' lemma, 
introduced by Radner (1961) to study 'turnpike theorems' for 'final-state' 
optimal programmes. For Ramsey-optimal programmes, the technique has 
been applied directly by Atsumi (1965) and McKenzie (1968). McKenzie 
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(1968) actually establishes a generalised version, and the name 'value-loss 
lemma' has been popularised by him. 

Proposition 8.1 If {x(t), yet + I)}; is a good programme from k in W^ D ú I =
then 

(i) b(x(t - 1), ó É í Ÿ ú = -,) 0 as t -,) 00 

(ii) (x(t - 1), y(t» -,) (x, y) as t -,) 00 

Proof For t ú =1, we can write 

[w(c(t» - wee)] = jJ[c(t) - e] - a(c(t» 

ú =jJ[y(t) - x(t)] - p[y - x] 

= jJ[x(t - 1) - x(t)] - b(x(t - 1), ó É í Ÿ ú =

Since {x(t), yet + 1) }; is good, there is e in :A', such that for T ú =1, 
T T 

e ú = L w(c(t» -wee) ú =jJk - jJx(1) - L b(x(t - 1), ó É í Ÿ ú =

Thus, for T ú =1, 

T 

L b(x(t - 1), ó É í Ÿ ú = ú =jJk - e ú =jJk + lei 
t=1 

Since b(x(t - 1), y(t» ú =0 for t ú =1 (by definition of b), we have 

= L b(x(t - 1), ó É í Ÿ ú = ú =00 
t=1 

and b(x(t - 1), ó É í Ÿ ú = -,) 0 as t -,) 00, proving (i). 
Define J to be the set of (x, y) in Q, such that Ilxll ú =max E ú I = Ilkll), IlYll ú =

max E ú I = 11"11). By Corollary 2.3, (x(t - 1), ó É í Ÿ ú = is in J for t ú =1. Clearly J is 
a nonempty, compact subset of Q. If (ii) does not hold, there is E > 0, and a 
subsequence (x(t' - 1), y(t'» of (x(t - 1), y(t», such that II (x(t' - 1), ó É í D Ÿ ú =
- (x, y)11 ú =E for all t'. Then, there is II > 0, such that b(x(t' - 1), y(t'» ú =II 
for all t', by Lemma 8.2. But this contradicts (i). Hence (x(t - 1), y(t» -,) 
(x, y) as t-,) 00, proving (ii). 

Theorem 8.1 There is a nontrivial stationary optimal stock. 

Proof Define {x(t), yet + I)}; as follows: (x(t), yet + 1» = (x, y) for 
t ú =O. Clearly {x(t), yet + I)}; is a stationary programme from x. We will 
now show that {x(t) , yet + I)}; is an optimal programme from x. Suppose, 
on the contrary, there is a programme {x(t), yet + I)}; from x, a real 
number E > 0, and an integer FI, such that for N ú =FI, 
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N 

ú = [w(c(t» - w(c)] ú =E 
í ú ä =

For t ú =1, we can write, using Proposition 7.1, 

w(c(t» - w(c) ú =P[c(t) - c] 

= P[y(t) - x(t)] - PLy - x] 

ú =P[x(t - 1) - x(t)] 
N N 

ú = [w(c(t» - w(c)] ú = ú =P[x(t - 1) - x(t)] 

= P[x - x(N)] 

239 

(10.8.3) 

(10.8.4) 

Using Proposition 8.1, P[x - x(N)] - 0 as N _ 00, so that (10.8.4) 
contradicts (10.8.3). Hence {x(t), y(t + I)}; is optimal from x. So x is a 
stationary optimal stock. It is non-trivial since w(c) > w(O), using y » x 
and Assumption 7. 

Remarks 

(i) Let G = {k in ú ú W= there is a good programme from k}. It is relatively 
straightforward to show, following the procedure used by Majumdar 
and Mitra (1982) in the aggregative model, that if k is in G, then there 
is an optimal programme from k. The details are, therefore, omitted. 
For conditions on (Q, w) which ensure the existence of a good 
programme from arbitrary positive initial stocks, see Majumdar and 
Peleg (1990). 

(ii) If {x(t), y(t + I)}; is an optimal programme from k in G, then it is a 
good programme, and so [x(t), y(t + 1)] _ (x, y) as t _ 00, by 
Proposition 8.1. This establishes the 'turnpike property' of optimal 
programmes. 
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